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Abstract—Game theory has been employed in the determina-
tion of optimum power levels of nodes for uplink power domain
non-orthogonal multiple access (NOMA). In this paper, a novel
closed form utility function with an optimized penalty-to-reward
parameter ratio is derived whose outcome gives Pareto optimum
power levels. The dynamically determined power levels with this
utility function have significant advantage over the static equally
allocated power levels in terms of the bit error probability in the
practical case of imperfect successive interference cancellation
(SIC) at the receiver.

Index Terms—Game theory, Pareto optimum, power domain
NOMA.

I. INTRODUCTION

Spectrum efficiency is of great importance for variety of
users over a limited bandwidth in the Internet of Things (IoT)
segment of 5G networks. Non-orthogonal multiple access
(NOMA) is a promising multiple access technique that allows
better spectrum efficiency [1]. Among different NOMA tech-
niques, power domain NOMA has been standardized based on
the superposition of different users’ power at the base station
and successive interference cancellation (SIC) at the receiver
[2]. Assigning the optimum power levels for each user has
a key role to enhance the system performance of NOMA.
Although this might be readily done by the base station for the
downlink, it is quite challenging for the uplink in which either
each user must have complete knowledge of the other users’
channels, as well as its own channel, or a central coordinator
adjusts the power levels of all users globally both of which
are neither practical and scalable. Similar to downlink NOMA,
multiple users transmit at the same time and frequency with
different power levels and SIC is applied at the receiver to
decode the user signals in the uplink power domain NOMA.
In this paper, power domain NOMA is studied in which each
user will locally and selfishly determine its power for an uplink
network topology, so that scalable low complexity resource
allocation can be obtained, which is highly desirable for the
IoT segment of 5G networks.

The key design requirement in power domain NOMA is to
decode all the user signals with an acceptable error probability
at the receiver depending on the power allocation among
users. In the literature, the studies for uplink NOMA are
mainly centered on static fixed power allocations, e.g., [3],
as stated in [4] wherein they propose a dynamic power

allocation for uplink NOMA based on mixed integer non-linear
programming. However, mixed integer non-linear program-
ming does not possess the scalability that is desired for 5G
network design. Moreover, centralized power control schemes
for uplink NOMA, i.e., assigning the powers for each node
through iterative water filling [5] or less complex suboptimal
approaches [6] is not feasible when there is a large number of
IoT devices and are not considered in this paper.

In this paper, distributed game theoretical power allocation
is studied for uplink NOMA in which each user locally and
selfishly determines its power. In this regard, we seek a fair,
efficient optimized utility function for a NOMA power control
game, where the outputs of the game give the optimum power
levels. Our utility function model is composed of a reward
and penalty function based on the canonical utility function in
[7] and is optimized based on the optimum power levels for
NOMA found in [8]. The optimized utility function gives the
Pareto optimum power levels. Although game theory has been
employed extensively for power allocations in CDMA net-
works [9], we incorporate this methodology for uplink power
domain NOMA. Furthermore, the previous power control
game studies for CDMA networks did not consider optimizing
the reward and penalty parameters [9].

The contributions of this paper are the following. First,
we demonstrate that there is a unique Nash equilibrium
for a general power domain NOMA model extending the
Nash equilibrium for the canonical utility function that was
previously introduced for CDMA [7]. Second, we determine a
closed form rule between the penalty and reward parameters of
the utility function to obtain Pareto efficient results. Third, the
power levels determined with the optimized utility function is
determined for uplink power domain NOMA, and its efficiency
is shown in terms of bit error probability in case of imperfect
SIC detection at the receiver. It is further shown that imperfect
SIC does not significantly affect the error probability of other
users’ symbols when their powers are adjusted according to
the proposed game theoretical approach.

The structure of this paper is as follows. In Section II, a
game theoretical power allocation scheme for uplink power
domain NOMA is discussed and the acquired power levels
are numerically evaluated in Section III. The paper ends with
the concluding remarks in Section IV.978-1-5386-3395-3/18/$31.00 c⃝2018 IEEE
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II. POWER CONTROL GAME FOR NOMA

The NOMA model consists of N nodes that will send
their symbols to an access point (AP) at the same time and
frequency with different power levels and the AP decodes all
the symbols using SIC at the receiver as shown in Fig. 1.
Therefore, the transmission power levels of nodes will directly
affect the efficiency of decoding. This scenario can be modeled
as a game played among the nodes in the uplink network. The
game is the decision process to determine the power that each
node will transmit. If they all transmit at full power, severe
interference will be created and none of the transmissions
will be successful where a successful transmission is defined
as having a desired level of signal-to-interference-plus-noise
ratio (SINR) at the receiver. On the other hand, it is not a
reasonable strategy for each node to transmit at low power,
because they are not cooperating and do not know how the
others will behave. As a result, it is essential to find the power
levels based on the Nash equilibrium. There can be many Nash
Equilibrium points, and changing the game parameters will
result in different power values for each node. Therefore, it is
important to determine the Pareto optimum solution [9], which
gives the optimum power levels of the nodes.

Fig. 1. System model

The game G can be formulated as G = (N, {pi}, {Ji(.)})
where N = {1, 2, · · · , N}, pi is the strategy set represents
the power levels, which is pi ∈ Di = (0, pmax), and Ji(.)
is the utility or cost function as Ji(.) : D → R where D =
D1 × D2 × · · · × DN and × denotes for Cartesian product,
and R is the set of real numbers. The cost function Ji(.) is
minimized by the ith user.

The choice of the utility function deeply affects whether
the solution is Pareto optimum or not. Therefore, it is critical
to use an efficient and fair utility function. One of the biggest
challenges in game theory is to select a proper utility function.
It is important to emphasize that selecting a different utility
function will give a different solution, or Nash equilibrium,
if it exists. Moreover, a utility function can have a unique
Nash equilibrium, whereas another utility function may not
even have a Nash equilibrium. Therefore, determining a proper
utility function is among the most challenging aspects of
applying game theory to the optimization of wireless networks.

Many different utility functions are employed for the power
control of nodes to reduce the overall interference in the
network, see [10] and references therein. As noted earlier, a
canonical utility function that is used for power control in an

uplink CDMA network within a single cell is composed of
a utility function composed of the reward and penalty parts
[7]. The price paid for unit power is Lagrange multiplied by
a parameter that constitutes the penalty function while the
capacity benefit that each node gains due to its transmission
power is multiplied by another parameter representing the
reward function [7]. However, the relation between the penalty
and reward parameters is missing in [7], and their analyses and
algorithms require processing gain, which is not the case for
power domain NOMA. That is, we generalize the results of
[7] to the power domain NOMA.

The utility function model that will be used for this power
control game within power domain NOMA is

J(pi,p−i) = P (pi,p−i)−R(pi,p−i) (1)

where P (pi,p−i) and R(pi,p−i) are the penalty and reward
functions respectively, and pi is the transmission power of the
ith user, while p−i is the power of all users except the ith

user. The power control game is expressed as

argminpi
J(pi,p−i),∀pi > 0. (2)

More rigorously, the utility function is expressed as

J(pi,p−i) = αipi − βi log2(1 + γi) (3)

where αi and βi represent the penalty parameter and reward
parameter respectively in (3), and

γi =
hipi∑

j ̸=i hjpj + σ2
. (4)

where hi is the channel gain for ith user and σ2 is the variance
of the noise.

Lemma II.1. There is a unique Nash equilibrium for the
NOMA power control game assuming that there are N of
active nodes whose power is greater than 0.

Proof. Taking the derivative of (3) with respect to pi produces

∂J(pi,p−i)

∂pi
= αi −

βihi∑
j ̸=i hjpj + hipi + σ2

(5)

and its second derivative is
∂2J(pi,p−i)

∂p2i
> 0. (6)

Then, equating (5) to 0 with the assumption that N users are
active, and writing this in matrix notation yields

1 h2/h1 · · · hN/h1

h1/h2 1 · · · hN/h1

...
...

...
...

h1/hN h2/hN · · · 1



p∗1
p∗2
...

p∗N

 =


β1/α1 − σ2

1

β2/α2 − σ2
2

...
βN/αN − σ2

N


(7)

where σ2
i = σ2/hi.

As proven in [7], the matrix becomes full rank provided that
N > 1 and there exists a unique Nash equilibrium depending
on the fact that the matrix is invertible and hence the set of
optimum power levels, p∗i , has a unique value. Since a multiple



access scheme is considered in this paper, N must be greater
than 1, so that the matrix is full rank and there is a unique
Nash equilibrium.

Lemma II.2. There is a closed form rule between the penalty
and reward parameters that makes the Nash equilibrium
Pareto optimum, which is equal to

βi

αi
=

σ2γr
∑N

i=1(1 + γr)
i−1 + σ2

hi
(8)

where γr is the predetermined SINR level at the receiver to
make a successful decoding.

Proof. We first derive a relation between penalty and reward
parameters assuming there are 2 nodes without any loss of
generality and then generalize this result to N nodes. It was
previously shown that the optimum power levels for NOMA-
SIC becomes [8]

pi =
σ2

hi
γr(1 + γr)

i−1, i = 1, 2, · · · , N (9)

such that each user has equal bit error rates (BER) at the
receiver assuming perfect SIC at the receiver. Using (9) in (7)
for 2 users results in

βi

αi
=

σ2γr + σ2γr(1 + γr) + σ2

hi
(10)

which can be written for 3 users as
βi

αi
=

σ2γr + σ2γr(1 + γr) + σ2γr(1 + γr)
2 + σ2

hi
. (11)

Generalizing (10) and (11) to N users gives (8), which
completes the proof.

Although the Nash equilibrium can take different values
based on the different penalty and reward parameters, any
penalty-price relation that satisfies (8) have unique Pareto
optimum Nash equilibrium.

Corollary II.3. The game G = (N, {pi}, {Ji(.)}) with the
utility function given in (3) that has a relation between penalty
and reward parameter as in (8) has a unique Pareto optimum
Nash equilibrium which is equal to (9).

Proof. Following Lemma II.1 and II.2 gives Corollary II.3.

Many important results can be deduced from this formula
and are summarized below:

• There is a closed form rule between the penalty and
reward parameters depending on the noise power, pre-
determined SINR level, and channel estimation.

• The power levels determined using the power control
game are not the optimum solution without prefect
channel estimation. This shows that the channel must
be perfectly estimated; otherwise the Nash equilibrium
does not become the Pareto optimum. That is, when the
channel is not known perfectly, the power levels can be
still determined with the game proposed in [7], since we
already proved that their results are applicable to power

domain NOMA, but the obtained Nash Equilibrium does
not become Pareto optimum.

• The penalty and reward function parameters are locally
dependent. That is, no global information is needed to
determine the optimum ratio between them.

Once parameters are set to the optimum ones, the power
control game can be used to find new optimum power levels
that will be needed due to the highly dynamic environment,
e.g., some nodes join the network while some leave. If we
cannot use game theory, a power sorting algorithm in the AP
must be used when the environment changes, whose complex-
ity depends on the implementation of the algorithm as O(N2)
or O(NlogN) to determine the optimum power level of each
node1 and then the AP notifies each node about its optimum
power level. This shows that the complexity increases with
the number of nodes. On the other hand, there is no need to
make any power sorting in the game theory solution, since
the outcome of the power control game determines each
nodes optimum power making the game theory solution more
scalable.

III. NUMERICAL RESULTS

The aim of this section is to show the necessity of dynamic
scalable power allocation policy among users, i.e., to empha-
size the importance of intelligent power allocation in uplink
NOMA. In this respect, the Pareto optimum power values
found in the previous section are compared with the static
power transmission strategy. Accordingly, there is a fixed total
transmission power and each user determines its power level.
In static approach, the power levels become independent of
the channel state. The performance metric for the comparison
is the BER assuming that the transmitted data is modulated
with phase shift keying without any loss of generality and
the total transmission power of nodes is the same for both
policy in order to have a fair comparison. It is well-known that
the bit error probability Pb,i of phase shift keying modulation
belonging to the ith user can be expressed for a given channel
and SINR by the well-known expression

Pb,i = Q(
√
2SINRi). (12)

A SIC receiver is employed at the AP to decode all
user signals. A common impractical assumption for the SIC
receivers is to make simulations with perfect symbol detection
while canceling the previous users’ symbols in the superposed
signal. However, it is clear from (12) that there will always be
bit errors for a finite SINR, i.e., perfect symbol detection is
not possible. This means that the decoded ith users symbols
are subject to interference from the previous (i − 1) user’s
residual bit energy proportional with (12) due to bit errors or
imperfect cancellation that leads to the

SINRi =
Pihi∑i−1

j=1 Pjhj +
∑N

j=i+1 Pb,jPjhj + σ2
(13)

1If the searching algorithm is implemented as two nested for loops, the
complexity becomes O(N2). On the other hand, if linked list or other
data structure is used in the searching algorithm, the complexity drops to
O(NlogN).



where Pi is the ith user power.
Let’s consider that 2 users are transmitting to a single AP at

the same time and frequency with 2 different power allocation
strategies. The first strategy is the Pareto optimum power
levels given in (9), which can be found by the nodes as a
result of the game whose penalty and reward parameters are
adjusted before the game begins as in (8), and the second
one is the fixed equal power policy such that both users have
the same power level irrespective of the channel. Accordingly,
a Rayleigh fading channel is selected. The basic assumption
is that the channel is initially perfectly known by each user.
Otherwise, the ratio of penalty-to-reward parameter in (8)
cannot be adjusted and the Nash equilibrium does not become
Pareto optimum. As shown in Fig. 2, power allocation in the
uplink power domain NOMA has critical importance, because
taking fixed equal powers disregarding the channel leads to
significant degradation for the average BER. Indeed, SIC does
not work efficiently without dynamic power allocation.
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Fig. 2. Average BER comparison of 2 users for 2 different power transmission
policies

The first and second users BER are related with the pre-
determined SINR level at the receiver. To be more specific,
each users power level is adjusted so that they reach this SINR
at the receiver provided that perfect SIC occurs at the receiver.
However, the second user SINR and BER are affected due
to the imperfect SIC of the first user bits. To observe this
degradation in the BER performance of the second user, each
users BER will be separately given instead of averaging. It can
be observed in Fig. 3 that imperfect SIC affects the second
users BER performance negligibly when their powers are
allocated according to the proposed game theoretical approach
assuming that each node perfectly estimates its channel.

On the other hand, the scenario for the fixed power allo-
cation scheme such that each user has equal power, which
makes the total transmission power the same with the game
theoretical approach to have a fair comparison, is rather
different. In this case, as shown in Fig. 4 the first user or the
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Fig. 3. Each user BER in case of imperfect SIC for game theoretic power
transmission

stronger user has a poor BER performance, since its SINR at
the receiver is low because the second users signal is strong as
well. Note that even imperfect SIC improves the second user
BER, because some bits of the first user are eliminated from
the superposed signal, which increases the second user SINR.
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Fig. 4. Each user BER in case of imperfect SIC for fixed power transmission

To emphasize the fact that our results are independent of the
number of users, the same simulation is examined when there
are 3 users with Rayleigh fading channels as depicted in Fig.
5. That is, the average BER of users has considerably worse
performance for fixed equal power allocation with respect to
the game theoretic power allocation that optimizes the power
level of each node individually. Notice that one can easily
generalize these results for N nodes.
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Fig. 5. Average BER comparison of 3 users for 2 different power transmission
policies

These results show that game theoretical power allocation
among nodes is needed to obtain a scalable and reasonable
performance from power domain NOMA based on uplink
network topology.

IV. CONCLUSIONS

One of the great challenges in the determination of power
levels of NOMA is to have a scalable approach that determines
the optimum levels for each user. The existing centralized
solutions to ensure power allocation for downlink power
domain NOMA cannot be applied for uplink power domain
NOMA due to the scalability concerns. In this paper we
present a scalable, distributed optimum power transmission
scheme, based on game theory, for uplink NOMA where
each user makes its own decisions on its power level. This
approach will control the overall uplink interference among the
many NOMA users. The proposed game theoretical approach
uses a closed form utility function, with optimized reward
and penalty function that gives the optimum power levels.
Nodes can choose a utility function based upon their own
observations and adjust their penalty-to-reward parameter ratio
without any global knowledge. This utility function with
optimized penalty-to-reward parameter ratio is very important
for future power control games, since it can be used for
other problems having a maximum power constraint, delay
constraint, or some other constraints and can give useful
results. Although one cannot claim that the optimized utility
function can give the optimum results under any constraints,
it can give useful results and provide intuition and guidance
under a wide variety of situations.
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